Incorporating Biological Knowledge into Evaluation of Causal Regulatory Hypotheses
نویسندگان
چکیده
Biological data can be scarce and costly to obtain. The small number of samples available typically limits statistical power and makes reliable inference of causal relations extremely difficult. However, we argue that statistical power can be increased substantially by incorporating prior knowledge and data from diverse sources. We present a Bayesian framework that combines information from different sources and we show empirically that this lets one make correct causal inferences with small sample sizes that otherwise would be impossible.
منابع مشابه
Bayesian causal phenotype network incorporating genetic variation and biological knowledge
A Bayesian network has often been modeled to infer a gene regulatory network from expression data. Genotypes along with gene expression can further reveal the regulatory relations and genetic architectures. Biological knowledge can also be incorporated to improve the reconstruction of a gene network. In this work, we propose a Bayesian framework to jointly infer a gene network and weights of pr...
متن کاملExploring the Reproducibility of Probabilistic Causal Molecular Network Models>
Network reconstruction algorithms are increasingly being employed in biomedical and life sciences research to integrate large-scale, high-dimensional data informing on living systems. One particular class of probabilistic causal networks being applied to model the complexity and causal structure of biological data is Bayesian networks (BNs). BNs provide an elegant mathematical framework for not...
متن کاملMolecular causes of transcriptional response: a Bayesian prior knowledge approach
MOTIVATION The abundance of many transcripts changes significantly in response to a variety of molecular and environmental perturbations. A key question in this setting is as follows: what intermediate molecular perturbations gave rise to the observed transcriptional changes? Regulatory programs are not exclusively governed by transcriptional changes but also by protein abundance and post-trans...
متن کاملIncorporating Causal Prior Knowledge as Path-Constraints in Bayesian Networks and Maximal Ancestral Graphs
We consider the incorporation of causal knowledge about the presence or absence of (possibly indirect) causal relations into a causal model. Such causal relations correspond to directed paths in a causal model. This type of knowledge naturally arises from experimental data, among others. Specifically, we consider the formalisms of Causal Bayesian Networks and Maximal Ancestral Graphs and their ...
متن کاملSupporting shared hypothesis testing in the biomedical domain
BACKGROUND Pathogenesis of inflammatory diseases can be tracked by studying the causality relationships among the factors contributing to its development. We could, for instance, hypothesize on the connections of the pathogenesis outcomes to the observed conditions. And to prove such causal hypotheses we would need to have the full understanding of the causal relationships, and we would have to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
دوره شماره
صفحات -
تاریخ انتشار 2003